coverimage

Multi Indicator Systems ⚬ Partial Order Theory ⚬ PyHasse

Calculations

Calculations

Note:At the moment the size of the data sets is restricted to maximal 100 objects.
Documentation Online-Demo
General infos
mis-pyhasse-spyout Spyout Spyout is recommended for an
introduction into PyHasse.
mis-pyhasse-acm Antichain incomparable objects
mis-pyhasse-chain Chain comparable objects
mis-pyhasse-copeland Copeland classical construction of a ranking index
mis-pyhasse-lpom LPOM posetic construction of ranking indices
mis-pyhasse-fuzzy Fuzzy Greater than/Less than in the fuzzy_framework
mis-pyhasse-similarity Similarity comparing two posets

Sample data

About the used datatsets:

  • acm_house.csv

    L.F.A.M.Gomes,L.A.D.Rangel: An Application of the TODIM method to the multicriteria rental evaluation of residental properties". Europ. J. of Operat. Res. 193, 204-211, 2009

  • chain_pollution.csv

    R. Bruggemann, A.Kaune, D. Komossa, K. Kreimes, S. Pudenz, K. Voigt: Anwendungen der Theorie partiell geordneter Mengen in Bewertungsfragen“, Deutsche Gewässerkundliche Mitteilungen (actual name: „Hydrologie und Wasserbewirtschaftung“) , 41(5), 205-206, 1997

  • Kristinalongnames.txt

    Voigt, K., H. Scherb, R. Brüggemann, and K.-H. Schramm. 2013. Discrete mathematical data analysis approach: A valuable assessment method for sustainable chemistry. STOTEN 454/455:149-153.

    Voigt, K., R. Brüggemann, H. Scherb, I. Cok, B. Mazmanci, M. A. Mazmanci, C. Turgut, and K.-H. Schramm. 2013. Evaluation of organochlorine pesticides in breast milk samples in Turkey applying features of the partial order technique. Int.J.of Environ.health Research 23:226-246.

  • chain-sample.csv

    fictitious data set

  • copeland_outrk.csv

    fictitious data set

  • a_equiv.txt

    fictitious data set

  • main19chemicals.csv

    Brüggemann, R., U. Simon, and S. Mey. 2005. Estimation of averaged ranks by extended local partial order models. MATCH Commun.Math.Comput.Chem. 54:489-518.

Copyright © 2014 PyHasse All Rights Reserved.

Powered by Python