Rainer Bruggemann about Helmut Hasse
====================================
:Q: *Let's talk about Helmut Hasse who gave his name to the Hasse diagrams
that are an essential part of partial ordering, at least in your
PyHasse software. When did you learn about Helmut Hasse and what
is so special with his theory?*
:A: That is a nice question for me, however a complete answer may be
pretty lengthy and possibly boring for others. But in short. As a
child I liked to connect literals in the newspaper following several
own defined rules and I was curious, to see what comes out.
For example, what is the result, when I connected all "k's"
in different lines.
Later, as student of chemistry I was fascinated by a lecture
of Professor Ruch where partially ordered sets
and their visualization by Hasse diagrams played a role. This talk
was given around 1975. Since this time I was aware of Helmut Hasse.
To the other part of your question: "What is so special with his
theory". I guess that, as a (mathematical) chemist, I have always been
interested in expressing theoretical facts in form
of points, which for example represent some aspects and see how such
aspects could be connected if they are related either by similarity or
by causal arguing  and we have the lines in the Hasse diagrams .
A Hasse diagram, made popular by Helmut Hasse, is one possible
realization of this idea. Topological indices, which are widely used
in mathematical chemistry are another example, resulting from a
representation of molecules by points (atoms) and lines
(the bonds between the atoms) and in sociology relations between
persons are often expressed by diagrams, consisting of points and
connecting lines.

:Q: *Can you give a simple example?*
:A: The most famous example usually represented in mathematical
lectures has its origin in number theory. However, I think this
kind of example will be too difficult to explaining in plain words here.
Another example (which is almost trivial) is: Think of Xmas time
and you have to select some gifts for your children.
Assume three gifts. Gift 1 is beautiful and stable, gift 2 is
slightly less beautiful and less stable than gift 1, gift 3 is
strongly less beautiful and less stable than gift 2. Then you can
order the gifts following the criteria beauty and stability.
Gift 1 > gift 2 > gift 3. This is an order and I guess you will
select gift 1 as it is both the most beautiful and stable.
Unfortunately gifts have their prices and we must consider as
to how far the gifts are lowpriced. Let us assume that based on to
the prices the order of the gifts is:
gift 3 < gift 2 < gift 1.
Now there is a conflict: If you have money, gift 1 would
be wonderful in based on its properties 'beauty' and 'stability' but
too expensive compared to the other gifts. For example gift 2 is
not as beatiful but is not as expensive as gift 1.
The analysis of such conflicts can be done by means of
partial ordering.

:Q: *So am I no more depending on suggestions made in online portals or
other catalogs?*
:A: Additionally to suggestions from online portals or other catalogs
you can apply PyHasse if you have the data.

:Q: *And for scientists, when would you recommend PyHasse instead of other
mathematical techniques like statistics or ...*
:A: The simple answer is here the user friendliness of PyHasse. Even if
a modern development would provide the macrooriented statistical
software R specifically for partial order many scientists are more
happy with a buttonoriented procedure as realized in PyHasse that
contains a variety of specific tools and can be used without the
need of writing more or less complicated scripts as necessary
for using R.
Source: Image of Helmut Hasse from http://de.wikipedia.org/wiki/Helmut_Hasse.
.. raw:: html
 About Rainer Bruggeman 
About Helmut Hasse 
About PyHasse 
Glossar 